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Abstract. Two independent photons, produced through the spontaneous emission of two separate emitters
subject to uncorrelated dephasing processes, can display two-photon interference (i.e. coalescence into a
two-photon state) when they are incident simultaneously on a beamsplitter, in a manner analogous to
that of twin photons produced through degenerate parametric fluorescence. The presence of dephasing
processes, however, reduces the interference contrast (i.e. the probability of coalescence), by the ratio of
the coherence time to the lifetime of the emitter.

PACS. 42.50.Dv Nonclassical field states; squeezed, antibunched, and sub-Poissonian states; operational
definitions of the phase of the field; phase measurements – 42.50.Ct Quantum description of interaction
of light and matter; related experiments – 78.67.Hc Quantum dots

1 Introduction

The recent quest for photon-based quantum computing
schemes has revived interest in multiphoton interference
phenomena. In particular, the recent proposal for the re-
alization of C-NOT gates and quantum computing with
linear optics [1] is based on the phenomenon of photon
coalescence, whereby two single photons arriving simul-
taneously by two different input ports on a beamsplitter,
leave both by the same output port. This two-photon in-
terference phenomenon, in which a two-photon Fock state
is constructed out of two distinct one-photon Fock states,
was first discovered by Hong, Ou, and Mandel (HOM) [2]
who implemented the coalescence of the two twin photons
emerging in a degenerate parametric fluorescence process.
The HOM two-photon interferometer has proved to be an
important element in the arsenal of basic quantum op-
tics experimental techniques and was subsequently used
in many studies of fundamental aspects of quantum op-
tics, such as in experiments on the nonlocality of quantum
mechanics [3] or in measuring the photon transit time in
superluminal photon tunneling [4].

In all HOM experiments carried out to date, the two
photons involved in coalescence had been obtained from
a process of degenerate parametric downconversion, with
their spectral and spatial properties being determined by
appropriate spectral and spatial filtering. Twin paramet-
ric photons are automatically synchronized as they are
produced simultaneously by a nonlinear process, while
at the same time they are strongly correlated (and are
even entangled) in frequency, wavevector, and polariza-
tion, since the nonlinear process that produces them has
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to obey definite conservation laws. Several theoretical pa-
pers have dealt with the coalescence of twin parametric
photons [5,6].

In recent years, relatively efficient emitters have been
developed that can produce single photons on demand, in
view of their use in quantum cryptography and/or quan-
tum computing. Such sources are based on the emission
of a single molecule [7], a single color center [8], a sin-
gle nanocrystal [9], or a single semiconductor quantum
dot [10], and emit true single-photon pulses, in contrast
to attenuated laser or parametric pulses whose Poisson
photon statistics entail a non-negligible fraction of pulses
containing two or more photons. The single-photon na-
ture of these sources eliminates the need for post-selection
procedure to weed out multiphoton occurrences, as is the
case in experiments with attenuated laser or parametric
pulses. At the same time, the complete absence of multi-
photon pulses is an important asset both for quantum key
distribution, where multiphoton occurrences can compro-
mise security, and for any quantum information processing
system where multiphoton events can reduce the visibility
of the result or even alter its value.

Thus, in view of the potentialities of single photon
sources in quantum information processing, it would be
interesting to explore the possibility of performing two-
photon interference experiments by using two single pho-
tons originating in two distinct emitters. Such a situation,
however, presents an important difference from that of
two twin parametric photons. The fields emerging from
two different emitters have no correlation in phase, even
if the two emitters are synchronized by being pumped si-
multaneously by a common laser pulse and are chosen
to have identical transition frequencies and polarizations.
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The lack of phase correlations arises from the coupling of
the two emitters each separately to an environment that
causes them to dephase independently. The dephasing of
the two emitters produces, in turn, a phase diffusion of
the emitted fields and this modifies the interference of the
two photons and destroys partially the phenomenon of
photon coalescence. The case of two independent emitters
was analyzed theoretically in the past [6], but the problem
of phase diffusion, which however is an inevitable feature
of any physical system, was not treated.

In this paper, we revisit the theory of two-photon in-
terference by considering explicitly the effect of dephasing
processes. The paper is organized as follows: in Section 2
we describe the two ingredients entering in our model,
namely, the single photon emitter subject to random phase
fluctuations during emission and the propagation of the
electromagnetic field in the four-port setup of a beamsplit-
ter. In Section 3, we calculate the fourth-order photon cor-
relation function that describes an HOM-type two-photon
interferometric setup in which the two photons impinge on
the two sides of the beamsplitter. These calculations serve
as a guide for identifying experimental situations in which
photon coalescence can be realized efficiently and can sub-
sequently be exploited for the realization of photon-based
quantum logic gates. Finally, in Section 4 we summarize
our conclusions.

2 The model

We consider the situation in which two photons originat-
ing from two single-photon emitters interfere on a beam-
splitter and are subsequently detected. In this section,
the theoretical description of such an experiment is done
in two steps: first we present the model for the material
emitters and the radiative interaction subject to phase dif-
fusion and then we deal with photon propagation in the
experimental setup.

2.1 Single photons with phase diffusion

The single photon emitters are modeled each as a two-level
system, with a ground state |0〉i, and an excited state |1〉i
of energy �Ω (we assume for simplicity that both two-
level systems have the same resonance frequency) and with
transition operators π̂†

i = |1〉ii〈0| and π̂i = |0〉ii〈1|.
We further assume that each two-level system is sub-

ject to sudden, brief, and random fluctuations of its energy
(arising, for example, from collisions or from interactions
with thermal phonons) that are modeled by a Langevin
force Fi(t) representing a stationary stochastic process
with delta-function correlation,

〈Fi(t)Fj(t′)〉 = 2Γδijδ(t − t′), (1)

where the angular brackets denote statistical averaging,
δij is the Kronecker delta symbol, indicating that the fluc-
tuations of the two two-level systems are assumed to be

completely uncorrelated between them, while Γ is the de-
phasing rate of the two-level system, which is related to
the characteristic time for pure dephasing according to
T ∗

2 = 2/Γ . For simplicity, it is assumed that both two-
level systems dephase to the same rate.

The Hamiltonian for each two-level system can thus
be written as,

H0i = �(Ω + Fi(t)) π̂†
i π̂i. (2)

Each two-level system interacts with the electromagnetic
field by absorbing or emitting photons whenever it under-
goes a transition between its two states. The interaction
Hamiltonian for each two-level system can be written as

HIi(t) = g
(
Â(−)(ri, t)π̂i + Â(+)(ri, t)π̂

†
i

)
, (3)

where g is the radiative coupling constant and Â(±)(ri, t)
is the positive (resp. negative) frequency operator for the
electromagnetic vector potential at point (ri, t). It is es-
sentially a sum of the annihilation (resp. creation) oper-
ators for all the modes of the electromagnetic field. The
time evolution of the vector potential operators Â(±)(ri, t)
under the free field Hamiltonian

HR =
ε0
2

∫
V

(
Ê2 + B̂2

)
d3r (4)

corresponds to the three-dimensional diffraction of a point
excitation of the electromagnetic field.

We can express the “interaction picture” Hamiltonian,
for each two-level system as,

H̃Ii(t) = e
i
�

�
t
0 (H0i+HR)dt′HIie−

i
�

�
t
0 (H0i+HR)dt′

= g
(
Â(−)(t)π̂ie−i�Ωt−iφi(t)+Â(+)(t)π̂iei�Ωt+iφi(t)

)
,

(5)

where

φi(t) =
∫ t

0

Fi(t′) dt′ (6)

is the fluctuating phase of the two-level system which,
in the interaction picture, is transferred to the emitted
photon.

We now assume that each two-level system is initially
(i.e. at t = 0) in its excited state π̂†

i |0〉i, while the field is
in its vacuum state |0〉Rad. The time evolution under the
interaction Hamiltonian (5) can be written as,

π̂†
i (t)|0〉i|0〉Rad = e

i
�

�
t
0 H̃Ii(t

′) dt′ π̂†
i

× e−
i
�

� t
0 H̃Ii(t

′) dt′ |0〉i|0〉Rad. (7)

It corresponds to the de-excitation of the two-level sys-
tem through the emission of a photon, and can be calcu-
lated under the standard approximations of the Wigner-
Weisskopf theory [11], essentially by expanding the time
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Fig. 1. Block diagram of proposed set-up for the coalescence
of two independent photons on a beamsplitter (BS). The two
input ports of the beamsplitter are each occupied by a two-level
emitter, while the two output ports each have a single photon
detector, connected to a coincidence counter. The beamsplitter
can be displaced with respect to the symmetric position by a
distance δX = cδτ .

evolution operator up to first-order in the radiative cou-
pling constant g and taking the long-time limit, as

π̂†
i (t)|0〉i|0〉Rad →

(
π̂†

i e
−Γ ′

2 t−i∆t − i
�
g

∫ t→∞

0

Â(−)(t′)

× e−i�Ωt′−iφi(t
′)e−

Γ ′
2 t′−i∆t′ dt′

)
|0〉i|0〉Rad (8)

where Γ ′ is the spontaneous emission decay rate of the
two-level system, which is the inverse of the radiative life-
time T1 = 1/Γ ′, while ∆ is the radiative frequency shift. In
what follows, we shall concentrate on the first-order term,
as it is the one that involves the emission of a photon.

2.2 Propagation

The experimental setup we consider consists of a beam-
splitter with two input and two output ports, labeled 1, 2
and 3, 4 respectively. The ports 1 and 2 are occupied each
by a single-photon emitter, and ports 3 and 4 by two
photoelectric detectors that convert the single photons re-
ceived into electric pulses that can subsequently be pro-
cessed (Fig. 1). In general, there are four different propa-
gation times that need to be considered, corresponding to
the propagation between each emitter and each detector.
In most experimental setups, three of the four propagation
times are kept constant, while an adjustable delay is in-
troduced in one of the input ports so that measurements
can be made as a function of that delay. In developing
the theory, however, rather than consider such an asym-
metric setup with an adjustable delay in only one port,
it is more convenient to consider a situation in which the
emitters and the detectors are disposed symmetrically on
either side of the beamsplitter, so that all four propaga-
tion times are equal (designated by τ1), and the adjustable
delay δτ is introduced by displacing the beamsplitter from
the symmetric position [2], thus affecting simultaneously
the two symmetric propagation paths that involve reflec-
tion on the beamsplitter.

In view of the experimental setup considered here,
in which the optical alignment is sensitive only to rec-
tilinear propagation along the four input/output ports
of the beamsplitter, we shall approximate the full three-
dimensional time evolution of the field under its Hamil-
tonian of equation (4) by a one-dimensional propagation
along the four paths defined experimentally. We shall
therefore designate by Â

(±)
i (t − x/c) the vector potential

operators (and by Ê
(±)
i (t − x/c) the electric field opera-

tors) for an excitation of the electromagnetic field (a pho-
ton) propagating along the x-coordinate of the ith port of
the beamsplitter.

At the beamsplitter, the four propagating fields are
related by the unitary transformation

Ê
(±)
3 =

√
T Ê

(±)
1 +

√
R Ê

(±)
2

Ê
(±)
4 =

√
T Ê

(±)
2 −

√
R Ê

(±)
1 , (9)

where T and R are the (intensity) transmission and re-
flection coefficients of the beamsplitter respectively, obey-
ing T + R = 1. Taking into account that the two paths
that involve transmission through the beamsplitter have
a propagation time of τ1, while the two paths that involve
reflection have an additional time delay of δτ (positive
in one case and negative in the other, as can be seen in
Fig. 1), the overall transformation for the field propagat-
ing between the two emitters and the two detectors can
be written as,

Ê
(±)
3 (t) =

√
T Ê

(±)
1 (t − τ1) +

√
R Ê

(±)
2 (t − τ1 + δτ) (10)

Ê
(±)
4 (t) =

√
T Ê

(±)
2 (t − τ1) −

√
R Ê

(±)
1 (t − τ1 − δτ).

3 Two-photon interference on a beamsplitter

The two photons, produced by the two independent two-
level systems interfere on the beam-splitter, are detected
by the two detectors which register, at the same time, the
time of each photon arrival. The results of such an exper-
iment are described by the g(2) correlation function which
is of fourth order in the electric field operators Ê(±)(t):

g(2)(τ) =〈〈
Ê

(−)
3 (t)Ê(−)

4 (t + τ)Ê(+)
4 (t + τ)Ê(+)

3 (t)
〉〉

〈〈
Ê

(−)
3 (t)Ê(+)

3 (t)
〉〉〈〈

Ê
(−)
4 (t + τ)Ê(+)

4 (t + τ)
〉〉 (11)

where the double angular brackets denote quantum me-
chanical averaging with respect to the state of the electro-
magnetic field and statistical averaging with respect to the
fluctuations. The numerator of equation (11) is essentially
the probability of joint photodetection of one photon in
port 3 at time t and one photon in port 4 at a time t + τ ,
while the denominator permits normalization with respect
to uncorrelated random events.

In accounting for propagation in space and through the
beamsplitter, it is possible to propagate either the state
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of the electromagnetic field or the operators that describe
the detection process. In this paper, we take the latter
approach as it gives expressions that are more compact,
by using the transformation (10) in which we incorporate
for simplicity the propagation time τ1 in the definition of t.
Thus, using the time evolution of the two-level systems (8)
that describes photon emission, the “ket” of the numerator
in equation (11) can be written as:

∫ ∞

0

dt′
∫ ∞

0

dt′′
(
T Ê

(+)
2 (t + τ)Ê(+)

1 (t)

−R Ê
(+)
1 (t + τ − δτ)Ê(+)

2 (t + δτ)
)

Â
(−)
1 (t′)Â(−)

2 (t′′)

× e−iφ1(t
′)−iφ2(t

′′)−i(Ω+∆)(t′+t′′)e−
Γ ′
2 (t′+t′′)|0〉Rad (12)

where the cross-terms in
√

RT were not retained, because
the corresponding detection process involves the annihi-
lation of two photons both in the same mode (1 or 2).
Thus, these cross-terms vanish when applied to a state
that contains one photon in each one of the two modes.

The “ket” of equation (12) can be readily evaluated
by commuting the two electric field (annihilation) opera-
tors through the two vector potential (creation) operators.
This can be done by using the canonical commutator for
the electromagnetic field,

[
Ê

(+)
i (r, t), Â

(−)
j (r′, t′)

]
=

i�
ε0

δijδ
⊥(r−r′−ct+ct′) (13)

where δ⊥(x) is the transverse delta function which, in our
simplified linear geometry that involves only transverse
fields, reduces to the ordinary delta function. Operating
this commutation, the only surviving terms are those pro-
portional to the commutator, so that the “ket” can be
evaluated as,

∫ ∞

0

dt′
∫ ∞

0

dt′′[T δ(t + τ − t′′)δ(t−t′)

−R δ(t + τ − δτ − t′)δ(t + δτ − t′′)]

× e−iφ1(t
′)−iφ2(t

′′)−i(Ω+∆)(t′+t′′)e−
Γ ′
2 (t′+t′′)|0〉Rad. (14)

The delta functions will give a contribution to the integrals
only when their arguments are in the positive time axis
and this ensures that the decay terms involve only positive
times. Upon integration of the delta functions, the “ket”
thus becomes

[
T e−iφ1(t)−iφ2(t+τ)e−

Γ ′
2 |τ |

−R e−iφ1(t+τ−δτ)−iφ2(t+δτ)e−
Γ ′
2 |τ−2δτ |

]

× e−i(Ω+∆)(2t+τ)e−Γ ′t|0〉Rad. (15)

The “bra” part of the numerator, which involves the nega-
tive frequency photodetection operators, is the Hermitian
conjugate of the “ket” (12), so that the overall expectation

value in the numerator of equation (11) is,

[
T 2e−Γ ′|τ | + R2e−Γ ′|τ−2δτ |

− RT
(〈

eiφ1(t)+iφ2(t+τ)−iφ1(t+τ−δτ)−iφ2(t+δτ)
〉

+ c.c.
)

× e−
Γ ′
2 |τ |−Γ ′

2 |τ−2δτ |
]
e−2Γ ′t, (16)

where “c.c.” denotes the complex conjugate, while the
angular brackets denote statistical averaging. Thus, av-
eraging over the fluctuating phase as explained in the
Appendix, the numerator gives

[
T 2e−Γ ′|τ | + R2e−Γ ′|τ−2δτ |

− 2RT e−Γ |τ−δτ |e−
Γ ′
2 |τ |−Γ ′

2 |τ−2δτ |
]
e−2Γ ′t. (17)

In practice, a coincidence experiment is done with rela-
tively slow detectors and the temporal resolution is ob-
tained essentially from the delay δτ introduced in the
beam paths. Under such conditions the two temporal vari-
ables related to the detectors, t and τ in equation (17),
should the integrated over the resolving time of the de-
tectors, which can be taken to be infinite, since it is usu-
ally much longer than any of the characteristic times of
the experiment, such as the coherence time or the ex-
cited state lifetime. Upon integration and normalization
we therefore obtain the dependence of the second-order
correlation function on the time delay δτ as,

g(2)(δτ) = 1 − 2RT

1 − 2RT

[
Γ ′

Γ + Γ ′ e
−(Γ+Γ ′)|δτ |

+
Γ ′

Γ

(
e−Γ ′|δτ | − e−(Γ+Γ ′)|δτ |

)]
· (18)

This equation can also be expressed in terms of the char-
acteristic times of the two-level systems, that is, the ex-
cited state lifetime T1, the pure dephasing time T ∗

2 and
the coherence time T2 defined by

1
T2

=
1

2T1
+

1
T ∗

2

(19)

as

g(2)(δτ) = 1 − 2RT

1 − 2RT

[
T2

2T1
e−2|δτ |/T2

+
T ∗

2

2T1

(
e−|δτ |/T1 − e−2|δτ |/T2

)]
· (20)

It should be noted that the coherence time T2 corresponds
to the reciprocal of the linewidth of the emission spectrum
of the two-level system.

For a 50–50 beamsplitter T = R = 1/2, so that at zero
time delay, δτ = 0, the joint photodetection probability is

g(2)(0) =
Γ

Γ + Γ ′ = 1 − T2

2T1
· (21)



J. Bylander et al.: Interference and correlation of two independent photons 299

Fig. 2. Unbalanced Mach-Zehnder interferometer for observ-
ing the coalescence of two photons emitted by a single quantum
dot, following two consecutive excitation pulses separated by
an interval ∆t. When the first photon takes the long path and
the second photon takes the short path, they both arrive si-
multaneously on the beamsplitter (BS) and can coalesce. In all
other path configurations the two photons are separated by an
interval of ∆t or 2∆t so that these events can be discriminated
by the coincidence electronics.

That is, the second-order correlation function corresponds
to a curve that at long time delays takes the value of 1,
while at zero time delay it displays a dip whose depth is
given by equation (21) and whose width is on the order
of T2.

In the absence of pure dephasing processes in the
two-level systems, when the emitted photons are “Fourier
transform limited”, (that is their temporal profile corre-
sponds to the Fourier transform of their spectrum) we
have T2 = 2T1 and the central dip goes all the way down
to 0 and its width coincides with the duration of the pho-
ton wavepackets. This means that, in the absence of de-
phasing, every time the photons arrive simultaneously on
the beamsplitter they coalesce into a two-photon state and
both leave by the same output port, as in the case of para-
metric photons. However, in the presence of dephasing, the
depth and the width of the coalescence dip are reduced,
which means that the photons will coalesce only if they
arrive within a time interval given by their coherence time
T2, and even in that case the efficiency of photon coales-
cence is reduced to

P =
T2

2T1
· (22)

An alternate interpretation of the reduction of the coa-
lescence dip rests on the visualization of the spontaneous
emission process in the presence of dephasing as consisting
of the emission of photon wavepackets of duration T2/2,
giving rise to a dip with the corresponding width. However
the emission of the photons occurs randomly within the
excited state lifetime and thus involves a time jitter of the
order of T1. The probability that two randomly emitted
photon wavepackets will overlap is given by equation (22),
hence the reduced depth of the dip.

In order to illustrate our results with a concrete exam-
ple, we shall consider the case of semiconductor quantum
dots which are at present the most promising system for
producing transform-limited single photons. As it is diffi-
cult to obtain two quantum dots with identical frequen-
cies to place in the two input ports of the beamsplitter,
an alternative experimental situation can be envisaged as

Fig. 3. Coincidence probability as a function of beamsplitter
displacement, g(2)(cδτ ), for two photons emitted by two inde-
pendent two-level systems displaying a pure dephasing time of
600 ps, for three different values of the excited state lifetime.
(a) Dotted line: T1 = 1.6 ns, corresponding to the case of bare
InAs quantum dots, (b) dashed line: T1 = 320 ps, correspond-
ing to InAs quantum dots with a lifetime enhancement of a
factor of 5 by cavity effects, (c) full line: T1 = 80 ps, corre-
sponding to InAs quantum dots with a lifetime enhancement
of a factor of 20 by cavity effects.

follows: a single dot, excited with two consecutive laser
pulses separated by a time interval ∆t � T1, emits two
single photon pulses separated by the same time inter-
val ∆t. These two consecutive emissions are characterized
by the same parameters T1 and T2 but are completely
uncorrelated. The two photons are then sent through an
unbalanced Mach-Zehnder interferometer (see Fig. 2) in
which one arm introduces a delay of ∆t, so that when
the first photon follows the long arm and the second pho-
ton the short arm, the two photons arrive simultaneously
on the exit beamsplitter of the interferometer, and pho-
ton coalescence can take place. The events in which the
photons follow a different configuration of paths in the
interferometer produce delays of ∆t or 2∆t between
the photons, so that these events can be easily discrimi-
nated if the time interval ∆t is long enough to be resolved
by the coincidence processing electronics. Figure 3 is a plot
of equation (20) for three different cases involving InAs
quantum dots. The characteristic times of InAs quantum
dots are typically on the order of T1 = 1.6 ns [12] and
T ∗

2 = 600 ps [13], (dotted curve in Fig. 3) which implies
that in an experimental setup involving bare InAs quan-
tum dots, the coalescence efficiency is only P ≈ 0.19, a
value which is too low for any practical implementation in
quantum information processing. Improvement of this ef-
ficiency can be achieved by reducing the radiative lifetime
of the quantum dot through its introduction in a resonant
microcavity and the exploitation of the Purcell effect [14].
A Purcell effect enhancing the spontaneous emission by a
factor of Fp = 5 (dashed curve) gives a radiative lifetime
of T1 = 320 ps and a coherence time of T2 = 305 ps
producing a coalescence efficiency of P ≈ 0.49. A co-
alescence efficiency of P ≈ 0.79, a value which is high
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enough to envisage applications in quantum information
processing, can be obtained if the spontaneous emission
of the quantum dots is enhanced by a Purcell factor on
the order of 20 (solid curve) which produces a radiative
lifetime of T1 = 80 ps and a coherence time of approx-
imately T2 = 126 ps. Such Purcell factors have already
been achieved [15], indicating that the possibility of re-
alizing photon coalescence with semiconductor quantum
dots embedded in pillar microcavities is totally accessible
with available technology.

It should be noted, that in order for photon coales-
cence to be a convincingly quantum effect, it has to have
an efficiency of at least 50%. Indeed, an experiment [16]
involving a quasi-classical beam of macroscopic intensity
split into two and then re-combined on a beamsplitter
in a manner analogous to that of the HOM setup, dis-
plays a dip in the g(2) correlation function going down to
g(2) = 1/2.

4 Summary and conclusions

We have studied the interference of two photons emitted
by two independent two-level systems that undergo de-
phasing in the course of the emission process. When the
two photons are combined on a beamsplitter, they both
exit the beamsplitter through the same output port, coa-
lescing into a two-photon state, whereas in the absence
of interference the photon trajectories are uncorrelated
and the two photons can leave the beamsplitter separately
by the two output ports. Such an experiment can be de-
scribed through the g(2) correlation function which gives
the probability of observing a photon in one output port
at time t and a photon at time t + τ in the other output
port. If interference occurs and the two photons coalesce,
the probability for the two photons leaving separately is
zero so that g(2) = 0, whereas for non-interfering photons
impinging on the beamsplitter, there is a 50% probability
for detecting a photon in each output port so that g(2) = 1.

We have calculated the g(2) correlation function for
the interference of two photons originating in two emit-
ters characterized by an excited state lifetime T1 and a
coherence time T2, by modeling the dephasing process as
resulting from stochastic fluctuations of the excited state
energy of the emitter corresponding, for example, to fluc-
tuations due to collisions. Our results indicate that inter-
ference does occur also with independent photons, when
the two photons arrive simultaneously on the beamsplit-
ter within a time interval of the order of the coherence
time T2 (given by the reciprocal of the spectral width) as
in the case of interference of twin degenerate parametric
photons. However, unlike the interference of parametric
photons, the g(2) function for interference of independent
photons does not drop to zero, but only to 1 − T2/(2T1).
This can be interpreted by viewing the emission process
in the presence of dephasing as involving a statistical un-
certainty in the time of photon emission of the order of
T2/(2T1). This time jitter reduces the probability that
the two photons arrive on the beamsplitter simultaneously

and spoils the efficiency of photon coalescence by the same
factor.

Calculations using the physical parameters of InAs
quantum dots, one of the leading single-photon sources at
present, indicate that, because of the relatively rapid de-
phasing, the efficiency of coalescence of photons produced
by bare InAs quantum dots is relatively low (of the order
of 20%). However, by enhancing the spontaneous emission
lifetime of the quantum dots by a factor of 20, by use of
Cavity Quantum Electrodynamics effects, it is possible to
raise this efficiency to levels that could become interesting
for quantum information processing schemes (of the order
of 80%). Experiments are in progress in our laboratory to
implement these ideas.

Numerous helpful discussions with R. Ghosh, Ph. Grangier,
and J.-Ph. Poizat are gratefully acknowledged.

Appendix A: Statistics of dephasing
fluctuations

In this appendix, we review the Langevin theory for colli-
sional broadening of photon emission. We assume that the
excited state energy of the emitter is subject to random
fluctuations described by a stochastic stationary Langevin
force of zero mean

〈F (t)〉 = 0 (A.1)

and delta function correlation

〈F (t)F (t′)〉 = 2Γδ(t − t′), (A.2)

where the angular brackets denote statistical averaging.
As the excited state evolves in time, it will acquire

phase given by

φ(t) =
∫ t

0

F (τ) dτ (A.3)

which is also a random variable with zero mean

〈φ(t)〉 =
∫ t

0

〈F (τ)〉dτ = 0, (A.4)

while its two-time correlation function can be calcu-
lated as,

〈φ(t1)φ(t2)〉 =
∫ t1

0

dτ1

∫ t2

0

dτ2〈F (τ1)F (τ2)〉
= Γ × (t1 + t2 − |t1 − t2|). (A.5)

All higher order correlation functions of odd order are
equal to zero, while the correlation functions of even order
break up into all the possible combinations of products of
second order correlation functions.

In calculating the average of the electric field being
emitted, we usually have to deal with exponentials of the
phase. The statistical averaging can then be performed by
expanding the exponential into a power series and then
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deal with all the combinations of second-order correlation
functions that result from that expansion. In particular,
we have

〈eiφ(t)〉 = e−Γt → 0, (A.6)

where we have taken the stationary limit Γt → ∞. Simi-
larly,

〈eiφ(t1)−iφ(t2)〉 = e−Γ |t1−t2|, (A.7)

giving rise to the familiar exponential decay of the coher-
ent amplitude due to dephasing.

When several emitters are present, we assume that
their fluctuations are uncorrelated so that the statistical
averages are performed separately for each emitter.
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